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ABSTRACT

Transport effects were studied in a bismuth single crystal at

liquid helium temperatures in a magnetic field. Except for a field

orientation study of the galvanomagnetic effects for mapping the light

holes ellipsoid, all the measurements were taken in the basal plane of

the crystal with the field parallel to the trigonal axis. The thermal

conductivity was found to be almost entirely due to lattice conductivity;

therefore, the experimental coefficients determined were limited to the

following: the isothermal transverse magnetoresistivity pill the

isothermal Hall resistivity p21' the (adiabatic) thermoelectric coef-

ficient ell, the (adiabatic) Nernst-Ettinghausen coefficient e•I and

the transverse magnetothermal resistivity ll• The Peltier tensor

coefficients were expected (from the Onsager relations) to be too

small to be measurable and thus, were not studied here. All these

effects, except the thermal resistivity coefficient exhibit the

Schubnikov-de Haas type oscillations. The kinetic coefficients of the

transport effects a11' '12' £1 '1, and C72 were computed from the ex-

perimental coefficients and compared with available theories. A rough

analysis of the gross effects was made by a decomposition of each

coefficient into a sum of different band contributions, each band being

approximated by a Lorentz term. General but not complete agreement

between experiment and theory is achieved for both two-band and multi-

band models. No special mechanism, as In the case of zinc, Is needed

to explain the oscillations in the different effects, since the Lifshitz

and Kosevitch Theory (a12), the Zil'berman Theory (all, e'II), and the in-

fluence of oscillation in the density of states (E'1' 2 ) lead to satisfactory

agreement.



I. INTRODUCTION

To obtain Information on the band structure of bismuth, galvano-

magnetic and thermomagnetic potentials were measured in a single crystal

at liquid helium temperatures. The de Haas-van Alphen type oscillations

observed were readily analyzed, yielding information on the various bands

of carriers. The gross effects upon which the oscillations are super-

imposed were also analyzed for information on the different carriers,

particularly for the possible existence of heavy carriers which show no

oscillations in the temperature range studied.

In recent years, extensive investigations have been made to determine

the electronic nature of bismuth. These studies include galvanomagnetic

effects,1"7 anomalous skin effect,8 ultrasonic attenuation,9 cyclotron10-131-7

resonance,' de Haas-van Alphen (dHvA)14"17 and Shubnikov-de Haas

IB. Abeles and S. Meiboon, Phys. Rev. 101, 544 (1956).

2A. L. Jain, Phys. Rev. 114, 1518 (1959).

3 T. Okada, Mem. Fac. Sci. Kyusyu Univ. B 1, 168 (1955).
4 A. L. Jain and S. H. Koenig, Phys. Rev. 1.27, 442 (1962).

5S. Mase and S. Tanuma, J. Phys. Soc. Japan 14, 1644 (1959).

6S. Mase, S. Von Molnar and A. W. Lawson, Phys. Rev. 12, 1030 (1962).

7 R. N. Zitter, Phys. Rev. MIT 1471 (1962).

8 George E. Smith, Phys. Rev. 115, 1561 (1959).

9 D. H. Reneker, Phys. Rev. 1152, 303 (1959).

101. E. Aubrey and R. G. Chambers, J. Phys. Chem. Solids ,, 128 (1957).

111. E. Aubrey, J. Phys. Chem. Solids l& 321 (1961).

J. K. Gait, W. A. Yager, F. R. Merritt, B. B. Celtin, and A. D.

Brailsford, Phys. Rev. 114, 1396 (1959).
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effects, 18 -23 specific heat, 24-25 and others. 2 6 -28

The available data lead to a model of the Fermi surface (FS), but

there remain several discrepancies. Many of the parameters associated

with the different bands of carriers are known only in order of magnitude,

or within a multiplicative factor. The present work examines the galvano-

and thermomagnetic effects both individually and collectively in order

to add to the present model of the FS.

A model for the electronic part of the FS was first established
14

from de Haas-van Alphen oscillations. This portion of the FS consists

of three ellipsoids (in momentum space) lying almost in the basal plane

(the (l)-(2) plane of Fig. 1) and interrelated by 1200 rotations about

the principal axis. inversion symmetry in the first Brillouin zone

allows for doubling these electron ellipsoids; this doubling is probable,

13 Glen E. Everett, Phys. Rev. 128, 264 (1962).

14/D. Schoenberg, Phil. Trans. Aj/ý2, 1 (1952).

15 N. V. Brandt, A. E. Dubrovskaia, and G. A. Kytin, Soviet Phys.--
JETP 10, 405 (1960).

16 N. V. Brandt, Soviet Phys.--JETP 11, 975 (1960).

1 7D. Weiner, Phys. Rev. Ij2 1226 (1962).

18
J. M. Reynolds, H. W. Hemstreet, T. E. Leinhardt, and D. D.

Triantos, Phys. Rev. 9, 1203 (1954).

19 P. B. Alers, R. T. Webber, Phys. Rev. j1, 1060 (1953).

2J. Babiskin, Phys. Rev. 107, 981 (1957).
2 1R. A. Connell and J. A. Marcus, Phys. Rev. 107, 940 (1957).

2 2 W. C. Overton and T. G. Berlincourt, Phys. Rev. 29, 1165 (1955).

2 3 L. S. Lerner, Phys. Rev. 127, 1480 (1962).

24+1. N. Kalinkina and P. G. Strekov, Soviet Phys.--JETP 34, 426 (1958).

25N. E. Phillips, Phys. Rev. 118, 644 (1960).
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FIGURE 1: The symmetry axes in the bismuth crystal. * is the angle

between the magnetic field H and the trigonal axis (3) in the (3)-(2)

plane.
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although not firmly established experimentally. These electrons are

apparently the most mobile carriers in bismuth.

A FS of relatively high mobility holes has the form of an ellipsoid

of revolution centered on the principal (trigonal) axis with its major

axis in the trigonal direction.1,15 A multiplicity of two for this pocket

of carriers is also possible, but rather improbable as there is recent

evidence for a single pocket.17i 4'28'29

In addition to the relatively high mobility holes and electrons, there

is evidence of other carriers--probably holes--of quite low mobility. 23 '27

These heavy carriers have an approximately spheroidal FS, 23 and a density

of states effective mass m* of the order of the free electron mass m 0 .

A fourth band of carriers with even lower mobility may also exist. 23 ',2

II. NOTATION AND CONVENTIONS

The transport effects are described in kinetic theory by the

relations

J =- ;E* -
- (1)

=o -,"E* + AG

where J is the electric current density and G is the negative temperature

gradient. The quantities E* and w* are the electric field and heat current

26M. C. Steele and J. Babiskin, Phys. Rev. 98, 359 (1955).

27J. R. Sybert, C. G. Grenier, and J. M. Reynolds, Bull. Am. Phys.
Soc. Ser. II, .7, 74 (1962).

SC. Gallo, B. S. Chandrasekhar, and P. H. Sutter, J. Appl. Phys.(to be published).

2G. E. Smith, J. Phys. Chem. Solids 20, 168 (1961).



density, respectively, each modified for convenience by a term Involving

the chemical potential 4c. The expressions are3 0 ' 3 1

-l
E* = E + • grad% ,P

-I
W* = w + a- JP

where E is the electrostatic field, w is the heat current density, and

e is the magnitude of the electronic charge (a positive number). The

quantities , e", it" and ?" are tensors relating the "fluxes" J and w*

with the "affinities" E* and G.

Other relations between J, w•, E*, and G

E= pJ +

W= -;J + 
(2)

and

E* p;'J + '•,

a a (3)
G = nJ_+ y, (,

are often used. This threefold representation allows computation of

the tensor elements in the more convenient form of Eq. (1) from the

experimentally determined quantities p, el', it', and 7. The expressions

for the tensors in Eq. (1) in terms of the experimental quantities are

3 OH. B. Callen, Thermodynamics (John Wiley and Sons, Inc., New
York, 1960).

31J. P. Jan, in Solid State Physics, edited by F. Seitz and D.

Turnbull (Academic Press, Inc., New York, 1957), Vol. 5, p. 1.

I
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The elements of ar, ell, and N reported In this Investigation were

calculated by means of Eq. (4). The nomenclature for the transport

coefficients is as follows: the condition G 2 = 0 is called "isothermal";

that of w* = 0 is called "'adiabatic." Thus we refer to e1,E, and ell'

as the Isothermal thermoelectric coefficient, the adiabatic thermoelectric

coefficient and the kinetic thermoelectric coefficient respectively.

Similarly, e 12 Is the Isothermal Ettingshausen-Nernst (E-N) coefficient;

Ie1'2' the adiabatic E-N coefficient; and e' 1 2', the kinetic E-N coefficient.

The experimental transport coefficients p, e', and y were obtained

with the magnetic field applied parallel to the principal axis of the

crystal. With this geometry and the symmetry of the bismuth crystal,

these tensors A~ave the form

al11 a 12 0

a = -12 al 0

0 0 a 3 3

~/

and have the following symmetries with respect to the magnetic field H

a2( = -a1 (-H),

a (H) = a(-H).

The ~ ~ 1 elmnso1n1~rpre i hsivsiainwr
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The two elements a and a12 are the ones of Interest in the present

investigation since measurements were made in the basal plane. Since

these coefficients generally exhibit Schubnikov-de Haas type oscillations,

the notation aco, aag is used to distinguish between the gross effect

and the oscillatory part of the effects. The amplitude of the oscillations

are denoted by I a.

III. EXPERIMENT

A. The Crystal

The crystal was prepared from spectroscopically-pure bismuth obtained

from Johnson, Mathey, and Co. It was first grown as an ingot without

preorientation and then cut to shape. The finished specimen had the

form of a right parallelepiped with dimensions 24.3 x 6.9 x 2.5 mm. The

crystal had a resistance ratio R(3000 K)/R(4.2°K) = 40. The orientation

of the symmetry axes in the specimen is shown in Fig. 1. With the

exception of the galvanomagnetic orientation studies performed with the

magnetic field in the (2)-(3) plane, all measurements of galvano- and

thermomagnetic potentials were made in the (1)-(2) plane with the magnetic

field directed along the 3-axis.

B. Measuring Techniques

A chamber was constructed to provide a crystal suspension system by

which both galvano- and thermomagnetic potentials could be measured

without disturbing the contact with the crystal. Carbon resistance thermo-

meters encased in thin copper sleeves were attached by stiff copper leads

directly to the crystal. A solder composed of bismuth, tin, and lead was

used to make connections to the crystal. Electric potential leads of

No. 40 gauge wire were then soldered to the stiff thermal leads to give
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common contact points for both types of measurements. The leads were

brought out of the vacuum chamber into the liquid helium through a seal

of epoxy resin. 3 2 Thermomagnetic measurements were made in a vacuum

better than 5 x 10"6 mm Hg. The isothermal condition for the galvano-

magnetic measurements was achieved by allowing the surrounding liquid

helium to fill the vacuum chamber. Potentials were measured by a'd.c.

method described by Bergeron, Grenier, and Reynolds. 3 3

C. Experimental Data

The Hall resistivity p21 and magnetoresistivity pl1 are shown in

Fig. 2 for magnetic fields up to 17 kG and temperatures 2.1 and 4.2 0 K.

The curves exhibit the characteristic Schubnikov-de Haas oscillations

in I/H. With the field in the (3) direction, the only detectable

oscillations are those due to the light hole pocket. The thermoelectric

coefficients e'l. are shown in Fig. 3; the temperature dependence is

to be noted. Both p 21 and e11 show a change in sign near 1500 G. In

the case of p21' the change of sign means that E(*)n. > 0, i.e. the

number of holes slightly exceeds the number of electrons. In the case

of ell, it indicates a low mobility hole carrier with a large density

of states. Neither P,,, nor el are analyzed directly, but rather are

used together with data on the thermal conductivity from Fig. 8 to

construct '1 and a

It is Important to note that the experimental data obtained for

are related to the bismuth-copper thermocouple formed by the bismuth

crystal and the copper leads. The effect of the absolute "isothermal"

3 2 K. S. Balain, C. J. Bergeron, Rev. Sci. Instr. 30, 1058 (1959).

33 C. J. Bergeron, C. G. Grenier, and J. M. Reynolds, Phys. Rev. 119,
925 (1960).



FIGURE 2: Hall resistivity and magnetoresistivity of the sample at

-4.2 and 2.10K for W * 0. The upper two curves are for p2l' the lIoe

two for pl' The insert shows the sign Inversion occurring in P2 1

at low field.
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FIGURE 3: The adiabatic thermoelectric coefficients, el' and 912.

Experimental values were obtained with H aprallel to trigonal axis

0- ) at 4.3 and 2. 10K.
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thermoelectric power of the copper leads icu Is to modify the expression

A34
for e. The experimentally determined e' is given by

The value ecu -A 0.8 x 106 V/deg reported by Blatt and Kropschot 35

when compared to our value N,1 1 e' 1 1 = 34.6 x 10.6 V/deg (both with H = 0

at 4.2 0 K) indicates that the effect of the copper would be less than

2 per cent of the total; the value Ecu= -3.2 x 10"8 V/deg at H = 0 and

T = 4.2 0 K for similar copper leads as reported by Grenier, Reynolds, and

Zebouni,3 4 yields an effect still smaller. In the later analysis, the

effect of the thermoelectric power of the copper leads is neglected.

IV. THEORY

A. Modified Sondheimer-Wilson Theory

The momotonic part of both "CIA and % are analyzed in terms of a

modified Sondheimer-Wilson theory.3 6 The expressions obtained assume a

quasi-continuum of states in "parabolic" bands with sharp Fermi distribution

functions and isotropic relaxation time independent of energy. Under these

conditions, the conductivities are given by

a12/H = ecE(*) n L

(5)
011 = ecEajn HjL

1088 (1963).

35F. J. Blatt and R. N. Kropschot, Phys. Rev. 118, 480 (1960).

36A. H. Wilson, The Theory of Metals (Cambridge University Press,
Cambridge, 194).
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where the summation extends over all bands and the (+) sign is taken for

holes and (-) for electrons. Here H = cm*/e rj is a quantity inverselySJ J

proportional to the mobility at zero field and is hereafter called the

saturation field; Lj is the Lorentz term L= (H2 * H2) 1 ; ni is the number

of carriers; r'j is the relaxation time; and the subscript j Indicates

that these definitions apply to the jth band. The factor aj is an

adjustable parameter Introduced to correct for non-circular orbits; 3 7 for

circular orbits, a. is equal to one.

Under the above conditions and with the additional assumption that

the relaxation times for electrical and thermal processes are equal, a

second-order approximation for the Fermi function at finite temperature

gives for

12
E" '/H=" - -

2 k2 cThb Z0 Lj

1 22 (6)
e~l =- Y( k cTE(*)c.ZjHI~,

3 7 1n the case of a set of tilted ellipsoids defined by the mass tensor

M12 01 M m 4 ) a is equal to .i (Mi1 + m2 - m4 m1)(m 2m3  2 x

ý10 m4 m3

m1  m/23  If the set is defined through the reciprocal of the mass
09I 0 0 1[ CI a )1 2 +1 2 n

tensor 0 C12 a, , a is simply ( (Y1/ad2 )1/2 + and if

0 a4 a3

the ratio Re between the principal axes of the basal cross section of
the ellipsoid is known then a = 1/2 (Re + Re'l).
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0
where Z is the density of states in band j at zero field. Here b and

cj are adjustable parameters introduced to facilitate curve fitting.

Ideally, b should equal one and cj should equal aj.

Since real metals do not necessarily satisfy the conditions under

which Eqs. (5) and (6) are derived, those equations may need to be modified

empirically to fit the data. Possible modifications are (1) the de-

composition of a band into several sub-bands, (2) the spreading of a

band into a continuum, and (3) the shifting of a band by considering

the saturation field H as made field dependent. In the analysis of our

data, no such modification was considered; a match of each band by a

single Lorentz term of the type of Eqs. (5) and (6) was attempted.

B. Lifshitz-Kosevich Theory of Oscillations

in the Galvanomagnetic Effects

A large amount of information comes from a detailed study of the

dHvA type oscillations which occur at high magnetic fields. For an

understanding of the transport processes, one must explain the scattering

mechanisms and their magnetic field dependence. As yet, a theory has not

been devised which approaches the excellence of the theory of the de

Haas-van Alphen effect. Attempts have been made, however, to obtain a

theory of the Shubnikov-de Haas oscillation, first by Levinger and Grimsal 8

and more recently by Lifshitz and Kosevich, 3 9 who related the field

dependent oscillations in the conductivity tensor or. to the susceptibility

38J. S. Levinger, E. G. Grimsal, Phys. Rev. 24, 772 (1954).

391. Lifshitz and L. M Kosevich, Soviet Phys.-- JETP 6, 67 (1958).
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oscillations through the classical mobility tensor. Zil'berman40 and

others4 -42 have also studied the Influence of Landau quantization on

various galva'omAgnetic and thermomagnetic effects. The Zil'berman

theory is discussed in Section IV 0.

In the Lifshitz-Kosevich theory, the oscillatory part of the

conductivity tensor is written as

6060aa + (la 7)

• L-K

where the first term arises from magnetic field dependent oscillations

in the number of carriers in the various bands under the assumption of

a constant Fermi energy ý. The second term comes from oscillations in

the number of carriers in the different bands with varying ý but with

in assumed constant. With q denoting the classical mobility tensor

for the carriers on the extermal cross-sectional area of the jth pocket

(band) perpendicular to the applied field, the first term in Eq. (7) is

written

&a q n (8)Aap = mj j

where n. is the oscillation in the number of carriers in the jth band.J

The explicit expression for n for a pocket of carriers with an ellipsoidal

FS with major axis parallel to H is38,39,43"44

- (eAH)3/2 K

4A 4pR CIU3  E '-2/3 +x H S - in)] (9)c expsgn 1 (2 i7+

40 G. E. Zil'berman, Soviet Phys.--JETP 2, 650 (1956).
4 1List of references can be found in the review article by A. H. Kahn

and H. P. R. Frederikse on Solid State Physics edited by F. Seitz and P.
Turnbull (Academic Press, Inc-., New York, 1960), Vol. 9.

42P. Horton, private communication.

431. M. Lifshitz and L. M. Kosevich, Soviet Phys.--JETP 2, 636 (1956).

4R. B. Dingle, Proc. Roy. Soc. (London) Agl,, 500 (1952).



where p is the multiplicity of the ellipsoids, R is the ratio of major to

minor axis of the ellipsoid(s), Sm is the extermal cross-sectional area

(of the ellipsoid) perpendicular to the magnetic field, 7 is 2n2km*cT/ehH,

y is a parameter defined such that yc/ehH is the area of the lowest

Landau level and is equal to one half for free electrons, and k is Boltzmann's

constant. Note that the period in 1/H is

P = A(l/H) = oh/c Sm. (10)

The second term in Eq. (7) is

=-[(-7K-)No + 1: (11)oEE01
0 j

where i and j are summed over all bands, qi is the classical mobility

tensor of ith band carriers averaged over all spheroidal cross-sectional
0

areas perpendicular to the field. Here Ni denotes the number of states

in band I, where the zero index refers to zero magnetic field.

C. Oscillation in the Density of States and in

the Thermoelectric Effects

In the absence of a theory for Landau quantization in Nernst-

Ettingshausen effect, the classical expression Eq. (6) is applied directly.

Thus, the oscillations in the density of states Z is expected to give a

contribution to the oscillatory part of the thermoelectric tensor CA of

the form

Sd.s. = Z /Z (12)

where el" is the jth term in Eq. (6) and r=•/.

a Aj



16

D. Zilaberman Theory for Oscillations in the Conductivity

Coefficient a and the Thermoelectric Coefficient I'III

The Influence of Landau quantization on electron scattering on

lattice imperfections has been studied by Zil'berman in the effective mass

approximation with complete isotropy. The amplitude of oscillations in

the conductivity coefficient id and in the thermoelectric coefficient

Gjlcan be written for band J in a first harmonic approximation

•l Zl - 11(- i )( )(PjH)1/ (13)

11Zil llJi ~sinh 7, j 13

1-? coth N
"" EJ ( ) s( (14)

where a and 'l'lj are given as the jth terms of Eqs. (5) and (6),

respectively. The above equations are the results of a modification of
42

the Zi 'berman theory by Horton.

It may be noted that when the oscillations are small, the expressions

Eqs. (13) and (14) simply add to the contributions from Eqs. (7) and

(12) since the sources of the oscillations are different in the two cases.

V. RESULTS

A. The Light Hole Ellipsoid

The high mobility hole pocket was mapped in detail first by Brandt
16

from dHvA oscillations and then by the present authors from galvano-

magnetic oscillations in the early stages 4 5 of this study. Other

4,J. R. Sybert, C. G. Grenier, and J. M. Reynolds, Bull. Am. Phys.
Soc. Ser. II, 6, 461 (1961).
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experimental techniques previously had established sowe of the parameters

of this pocket.l1,3,2,1 8  A galvanomagnetic study of this particular

pocket Is inherently more accurate than the dHvA study since extremely

low temperatures are not required for observation of the oscillations.

In this investigation, oscillations in the resistivity tensor elements

pPA for various magnetic field orientations in the (2)-(3) plane were

observed at 1.80 K in fields ranging up to J6 kG. The dimensions of the

ellipsoid are established by computing Sm for various orientations *

from Eq. (10). Here * is the angle (in the (2)-(3) plane) between the

(3) axis and the applied magnetic field as shown in Fig. 1. The periods

were determined by examination of the recorder traces for maxima and

minima. The values of 1/H corresponding to successive maxima were

plotted against successive integers; the slope of the resulting curve

determined the value of the period. Typical plots are shown in Fig. 4.

The oscillations observed are due not only to the hole ellipsoid under

investigation, but also to other pockets of carriers. The presence of

one of the high mobility electron ellipsoids mapped by Schoenberg can

be seen in the * = 63.60 plot where it shows up as a periodic error in

the determination of the shorter period due to the holes (see next section).

Since an extensive mapping of the electrons pockets has already been made,

no attempt is made here to analyze the oscillations due to the electrons.

Only a few periods were checked and found in perfect agreement with
14 23Schoenberg or Lerner data. For a prolate ellipsoid of revolution,

Eq. (10) can be written in the form

p= (eh/nac) 2 [ (a- 2 _ c- 2 )cos 2 * + c- 2 ] (15)

where a and c are the semi-minor and semi-major axes, respectively. A

plot of p2 as a function of cos 2 */ Is shown in Fig. 5. The linearity
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FIGURE 4: Typical plots of I/H at successive maxima (or minima) of the

Shubnikov-de Haas oscillations versus Integers (or half-integers) for

different orientations of the magnetic field in the (3)-(2) plane.
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FIGURE 5: p2 versus cos2 * for the light hole ellipsoid. Data was taken

at 1.80 K. The straight line corresponds to an ellipsoid with ratio of

major to minor axis 3.-9.
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of the curve Indicates that the FS of the light holes is Indeed ellipsoidal.

There is evidence from the work of Brandt, eat al. 15 of a departure of the

FS from an ellipsoid for values of * > 750 (Just beyond the range of our

measurements). However, this departure was not mentioned in a later

publication concerning, presumably, the same experimental data. The

period for * - 0 is 1.52 x 10"5 G"1 and the period extrapolates to 0.43

105 G' 1 for * = 900. The volume of the ellipsoid in momentum space is

found to be V - 4.97 x 10"62(g cm/sec)3; the number of holes per atom

per ellipsoid is 1.21 x 10"5 per atom or 3.43 x 1017 per cm3. in good

agreement with Brandt, et al. data.

The temperature dependence of the oscillations in the P13 (with * * 0)

is the same as that in n as given by Eq. (9). For constant H, the values

of the effective mass m* and, consequently, of the chemical potential to

can be determined from Eq. (10) with Sm = 2nwm*o. The experimentally

determined values of m* are given in Table 1; the value nr/m° = 0.065 is

adopted as a good average of those. This value, together with the other

parameters obtained from the present work for the group of light holes,

is shown in Table II, along with corresponding results from other techniques.

B. Fluctuation in the Period of the Light Hole Ellipsoid

Despite the very good agreement between the present mapping of the

light hole ellipsoid and the one of Brandt, as well as the good match

between the effective mass found here and the one found by cyclotron

resonance and anomalous skin effect determinations, some doubt still exists

about some of the characteristics of this pocket:

(a) Most of the analyses of galvanomagnetic effects with a two-band

model seems to indicate a smaller number of holes, nh - 2.5 1017 c"3,

(see the two-band model in Sec. V, E) than found in the light hole mapping.

Lo
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TABLE I

The cyclotron mass m*n/m of the hole ellipsoid with the magnetic field

parallel to the trigonal axis, obtained from the temperature dependence
of the oscillations amplitude in the Hall conductivity 012 and magneto-

conductivity a11 respectively at different magnetic field value.

From Temperature From Temperature
Dependence of •12 Dependence of B11

At H - 10 kG 0.0647 0.065

At H - 12 kG O.0636 0.0694

At H - 14 kG O.0o68 o.o639
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(b) A possible departure from ellipsoidal shape as indicated in the

first report of Brandt, et al. 15

(c) And lately, the indication by Lerner 23 of the existence of isotropic

periods 7.2 10-6 G"1 appearing mostly for large values of *. These

periods are Interpreted by Lerner as those of the heavy hole ellipsoid.

Should they be Interpreted as belonging to the light hole pocket with the

period 7.0 10-6 G'1 replacing the extrapolated 4.3 10-6 G"1 value, the

result would be a number of carriers close to the value expected from the

two-band model.

A careful investigation of the period of the light holes was performed

again with the field in the (2)-(3) plane, mostly for large values of 4.

With * in the range 0 to 300, perfect monoperiodic oscillations were seen

in most of the field range with an appearance at high field of a slight

distortion of the oscillations, interpretable either In terms of the

appearance of a second harmonic or in terms of Lerner's isotropic period.

For higher * values, 30 to 600, a slight modulation appears in the periods

as a function of the field; the period of the modulation seems to correspond

to the longest period of the electron pockets. Since the modulation

amplitude is small, the average period obtained by fitting a straight line

to the * - 630 data in Fig. 4 still can be considered as a suitable

determination for the mapping parameters.

For * greater than 600, the galvanomagnetic oscillations decrease in

amplitude; the range of field for which they are detectable rarely exceeds

the range in which the modulation occurs. A field-dependent period is

then obtained in the analysis. In the case of the largest * angle,

instead of a smooth variation in period, the variation appears almost

discontinuous as if the electron oscillation were approaching the extreme

quantum limit. The determination of an average period is then questionable.

Ii
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The experimental values for the periods are plotted versus * in Fig. 6.

* For W< 500, the data is in excellent agreement with the form of Eq. (15).

For " > 500, a considerable scatter in the data is apparent. Many of

the data points fall into the range given by Lerner.23 The existence of

the heavy hole pocket discussed by Lerner is neither confirmed nor rejected;

the scatter of the data calls for caution. For a two-band model with one

hole ellipsoid and three electron ellipsoids as shown in Fig. 7, some

explanation is found for this behavior of the period. When the magnetic

field is in the direction of the binary axis (* - 900), two of the electron

ellipsoids present very small cross sections to the field. For field

strengths somewhat above 25 kG, the last Landau level Is above the Fermi

energy so that no states are available for electrons in the two ellipsoids.

In a first approximation, if n is the initial number of electrons per

ellipsoid, the third electron ellipsoid must increase its population to

n' and the hole ellipsoid population must decrease from nh = 3n to ni= n'e-a h e

The new extremal cross-sectional area S' of the hole ellipsoid is then
m

smaller than the original value Sm; the associated relative increase in
m(

period is given by

P'/p = (e + Ch)3 2/3 e + th) (16)

where the C's are the respective chemical potentials. This corresponds

to an increase of the period by about 60 per cent. The fields used here

were lower than those necessary for the extreme quantum limit; but the

emptying of the two electron ellipsoids progresses in a manner periodic

with Increasing field.

With the phase from Eq. (9) written in the form

L. S. Lerner has most recently established that this isotropic
hole pocket may not be existing (to be published).



FIGURE 6: The period P of the hole ellipsoid versus the orientation with

emphasis for the large value of * on the indetermination of the period.

(+) period average over the entire field range, (o) averaged period for

lowest field, (.) averaged period for highest field. The solid line

corresponds to the ellipsoid specified in Section A.
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vFIGURE : Schematic representation of the holes and electrons In an

E versus k diagrtm. When the electrons pockets (1) or (2) (or both)

are emptied, the Fermi energy rises with an Increase in number of

electrons in pocket (3) and a decrease in the number of holes.
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S, Ms,( 0'

where S' is the field-dependent cross section of the hole ellipsoid,
m

comparison can be made with the phase * expected from a fixed Sm value

eh H -2i-

In Fig. 4 for 6 = 63.60, the values of L and L plotted versus T are

represented by the straight line for */2n and by the experimental points

for *'/2n, respectively. The relative deviation is

AS 2 nh

o " m 3 nh

with Anh/nh is the relative variation of the number of holes in the hole

pocket. The above is also in first approximation

9-3 9 h I n - 0 n36 n (17)
0 0

where An eIn is the relative variation of the number of electrons in one

of the electron pockets as the extreme quantum limit is approached.

According to this equation, the fluctuations in the curve * = 63.60
Alne

of Fig. 4 seems to indicate an order of magnitude for - -n of 3 per
n.

cent and 15 per cent for H = 8 kG and H = 15 kG, respectively, values

which can reasonably be expected from an expression for An similar to
e

Eq. (9). Equation (17) must be modified to account for larger fluctuations.

Departure from the quasi-continuous distribution of states in the hole

pocket, directions of field different than that of the binary direction,
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and possible existence of other bands may need to be considered. Nevertheless,

since fluctuations in *' are important, the value of the apparent period

PI as determined from measurements in a short range of field is affected

appreciably since l/P' - 21( 21/1A(I/H). The wide scatter of the points2n

in Fig. 6 may be a consequence of this mechanism; in which case caution

should be used in Interpreting periods measured at high fields, over a

short range of fields, for directions * greater than 600.

C. Thermal Conductivity

Knowledge of the thermal conductivity tensor is necessary for the

computation of the kinetic thermoelectric coefficients. It Is ordinarily

computed from the experfmentai.,thermslrresistivity coefficients.3 4

Bismuth shows a particularly simple thermal resistivity behavior with a

practically field independent 7ll term and a negligible Y2, Righl-Leduc

resistivity (G2 = O0 721 = 0). This can be summarized by y = 7ll 1 and
a -l

the conductivity give simply 7 = 'A 1 with Ni! = 711

Data for the thermal conductivity at zero magnetic field, along with

earlier work on bismuth by Shalyt 4 and White and Woods 47 are presented in

Fig. 8. The low temperature points may be made to fit the T3 behavior of

lattice conductivity as expected when the size effect is preponderent.

The conductivity seems to reach a maximum around 3.6 0 K, but more recent

48measurements on the same crystal indicate a maximum around 40K with

a value of 7, at 4.2 0 K about 12 per cent higher than reported here.

S. Shalyt, J. Phys. USSR 8, 315 (1944).
47G. K. White and J. B. Woods, Phil. Mag. Ser. VIII, 342 (1958).

14R. Gillinghem and H. J. Mackey (private communication, R. Gillingham
Ph.D. Thesis, Louisiana State University (1962), H. J. Mackey Ph.D. Thesis,
Louisiana State University (1963), unpublished.
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FIGURE 8: The thermal conductivity In function of temperature for a

zero magnetic field. This conductivity is pratically due to the lattice

only. The dashed line Is the expected low temperature T3 variation

adjusted to fit the data. Shalyt 46, White and Woods and Gillingham

and Mackey 48 data are also given.
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An Indication of the contribution of the electrons to the heat flow

is obtained from the Wiedemann-Franz law: At 4.0°K and zero field, the

electronic part of the thermal conductivity is 'A = 3.18 x 10"2 W/deg-cm.

By comparison with the data of Fig. 8 it is seen that the expected electronic

contribution to the total thermal conductivity Is only a fraction of one

per cent.

Measurements of ?7 with and without an external magnetic field served

to substantiate the neglect of the electronic contributions. In the

calculation of the tensor elements the heat conductivity is assumed to be

due to the lattice only; thus, the thermal effects are described simply

by

G = 0; w* = 'AlG = N GI; w* = 0, *A = 0. (18)
2 1 1 L 2 21

If the mean free path A is established by scattering from the boundaries

of the crystal, the expected value of the thermal conductivity, A=
1L

-C vA, is 5.4 W/deg-cm at 2.070K. Here the average sound velocity v and
31L
the lattice heat C are computed F1lssically with a Debye characteristic

L
temperature of lln°K.24 This value compares favorably with the experimental

value "L = 4.3 W/deg-cm.

It is of Interest to note that dHvA type oscillations have been

reported in the thermal resistivity of bismuth at 1.6040K,2 but were

not observed in the present study (minimum temperature 2.1 0 K) perhaps because

of the impurity content of the sample.
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D. Four-Band Model

The mobilities, populations and densities of states of the various

bands are obtained by the fitting to Eqs. (5) and (6) of the coefficients

000, Fig. 9, and cý., Fig. 10, determined from the experimental data.

This process does not, in practice, completely solve the problem, but

does give a useful Indication of the various bands. A reasonably good

fit can be obtained if only one of the quantities, say all, is considered.

If a simultaneous fit for all the tensor elements and a correlation with

the band parameters as determined from oscillation analysis, I. e. number

of holes be equal to 3.4 x 1017cm"3, are required, serious discrepancies

result. Table III gives the results of a deliberately short analysis

of the curve fitting. Work is now underway in analyzing more complete

field and temperature data to unravel many of the problems encountered

48
in the present analysis. The curve fitting technique, in addition

to requiring that the final results match the experimental Oals and 4ý0'

involves curve extrapolation at high- and low-field limits. The utility

of these plots is evident from an expansion of Eqs. (5) and (6) in the

high and low field limits. 48 Low field extrapolations are made by the

plotting of each of the quantities a1 2 /H, e 2/H, ei1 and all' versus

H2 . For the high field limit, the useful plots are Ho12, He'1"2, H2ell,

and H2a versus I/H 2 . Further, the results should satisfy the funda-

mental requirements.49

dH nec E~a ni; J0 l/H dH - rec E (±) n /H. (19)

49J. W. McClure, Phys. Rev. 112 715 (1958).

S......... .. ............
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FIGURE 9: The Hall conductivity and the transverse magnetoconductivity.

The ago over the complete range of H are shown by using three different

scales. These curves were calculated frao experimental data using Eq. (4).
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FIGURE 10: The kinetic thermoelectric coefficient and the kinetic

Ettingsheusen-Nernst coefficient calculated from Eq. (4) in function

of magnetic field. The 64 over the complete range of H are shown by

using three different scales.
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The experimental evaluation of 
35dH 

yields a value Ea n

1v

10 x 1017cm"3 at 4.2 0 K which,for example, eliminates the possibility of

a multiplicity of 2 for the light hole ellipsoid. It was found also

that one of the most illustrative ways to plot the data was that of

a12' Hall, el1'2 , He'1'1 versus log H, for which plots, the contribution of

the various bands can be best visualized as in Fig. 11-13 for HMan, HeI'

and a12 at 4.20.

(1) The high mobility electron pocket (H1 = 32 G) is identified with
14

that discovered by Schoenberg from dHvA studies. It should also be

compared to the electrons of the two-band model interpretation of the

galvanomagnetic effects, cyclotron resonance, and anomolous skin effect.

Some of the experimental values of nI obtained by various means are

shown in Footnote 50. There is a general agreement between the value

of 4.3 x 1017 electrons cm" 3 reported in Table III (Electrons (1) ) and

those listed in Footnote 50. There is still ambiguity as to the

multiplicity of the electron ellipsoids since very different values for

the number of electrons per ellipsoid have been given, even recently.

A value n = 0.91 1017 cm"3 per ellipsoid may favor a 6 ellipsoid set;

a value n = 1.4 1017 cm" 3 , a 3 ellipsoid set.
e

One difficulty in the identification of band (1) with the electrons

of Schoenberg's ellipsoids comes from the experimental result aIn1 M ni,

which would indicate an isotropic band. The value of a1 as obtained from

50 The number of electrons per ellipsoid measured directly may vary
if correction of non parabolicity and non ellepticityS1 are made (see refer-
ence iven) some of the values are (0.91, 0.95, 1.01, 1.09, 1.25, 1.4)
x lOl cm"- ellipsoid"I from references 11, 17, 23, 23, 14, 4, respectively.
From the two band model interpretation of cyclotron resonance, or effect of
alloying, the total numbir of electron will be (4.6 (800 K), 4.9, 5.5, 5.8,
2.5, 3.9, 4.2) x 1 O1 cm" , as given in references 1, 2, 8, 17, 7, 4, 12,
respectively.

51Morrel H. Cohen, Phys. Rev. 121, 387 (196).
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FIGURE 11: Ha11 versus log H for T - 4.2 0 K. The broken lines are

representative of bands I, Ii, III, IV, respectively, of the multiband

model. The full line is the sum of the different bands contributions.

The crosses represent experimental points. The right scale shows

directly the apparent population of the bands aIn . Also bands (e)

and (h) of the two band model which give a relatively good fit of the

experimental point are indicated.
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FIGURE 12: He'll versus log H for T - 4.3 0 K. The broken lines curves

are representative of bands I, II, II1, IV, respectively, of the multi-

band model, the full line is the algebraical sum of those band's

curves. The right scale measures directly the apparent density of state

of each bands ciZi. Also bands (e) and (h) of the two band model which

give a relatively good fit of the experimental point are indicated.

Oscillations in the high field range are indicated by some of their

maxima (o) and minima (+).
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FIGURE 13: 0l2 versus log H at T - 4.2 0 K. The broken line curves are

representative of the electron band (e) and hole band (h) of the two-

band model. The full line Is the combined effect of the two. The points

represent some of the experimental values. The right scale shows

directly the size of the band as measured by ni/HI in G 1 cm" 3 . Also

band I, 11, III of the multiband model are Indicated.
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various experimental data52 ranges from 3.22 to 11 with an average value

about 5. However, because of the high mobility and the restriction of

Eq. (19) which excludes another densely populated band of electrons,

band (1) must be designated as Schoenberg's ellipsoids and a1

result must be considered as an anomaly, yet unexplained. Probably

removal of the restriction that T be isotropic and independent of energy

would bring the theory more in line with experiment. Another surprising

result in this band is the extremely large value of blZl, which is 12

times the expected value (3/2)nl/t1, (bI = 1), where n and t5 are

taken from Table III. This anomalously large value for the density of

states may account for the anomalously large specific heat (see Section

V E), a fact which, if true, is unexpected and which at present is not

understood. Work on an unexpected temperature dependence of the parameters

48of this band may help clear this point. Only the clZ1 value approaches

theoretical expectation52 with c1 = 7.0. The condition c1 = a is far

from being established experimentally since aI is apparently anomalous.

(2) Bu•nd (2) is logically identified as the single ellipsoid of light

(high mobility) holes, described in Section V A. The sign (+) and

population of the band, as well as the comparison of its effective mass

to that of the light electron band5 (H1/H2 "' -1/m*, the same T assumed

52The weighing factor a37 (or c ), the ratio between linear average
and rms average of the mobility in thl (1)-(2) plane for electrons, can be
computed from data of different authors: 11.3, 4.5, 4.6, 5.35, 6.35, 3.22,
5.55, 4.75, etc. See references 14, 12, 10, 11, 23, 1, 17, 4 respectively.

53$hoonberg's value 14 2.8 10' 14ergs is used here as chemical potential
value te. This v lue is in agreement with Lerner's. 23 The non-parabolic 14model correction51 leads to the somewhat different values (3.5, 4.2) x 10O
ergs per el. See references 17, 23 respectively.

%The cyclotron mass for the electrons in the (1) (2) plane have been
directly measured by cyclotron resonance (0.08, 0.051) x m (see references
12, 13) or can be computed from different effects, mi - 0.055 mo has
generally been the value adopted for best fit. l14,10,1 ,17,23 Then nr/mt
- 0.85 as comaqred to H1/H2  0.5.I1 2
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for each) contribute to this identification. Thus the value n2 = 3.4 x

l017/cm3 has been adopted even though a more recent Investigation48 shows

a slightly better fit with n2 somewhat smaller. The adopted value of

H = 65 G is a compronise--a smaller value is called for in the ell
2 1

curve fitting, but there is a degree of uncertainty here due to the

nearness of band (3). In the e1'1 and e1'2 fitting, the effect of these

light holes can hardly be seen, which indicates there is no anomaly

in the density of states as with the light electron band. In fact, the

apparent density of states here is only 10 per cent of that of the light

electrons. Since the FS for this band is circular in the basal plane,

we have set a2 , b2, and c2 equal to unity. Recent experiments 48 Indicate

that a value of b2 - 1.5 may be more appropriate.

(3) The third band consists of rather low mobility holes (H3 = 500 G).

The population of this band n3 has been determined only within limits:

contradictory evidence sets n3 between 0.7 x 1017cm" 3 and 2.5 x 1017cm" 3 .
17-

A careful weighing of the evidences give n3 ft 1.1 x 1017cm"3 and a3n3
2.5 1017cm" 3 for the most suitable concentration. In any case, these

values are smaller than the value of 2.88 1017cm" 3 obtained by Lerner. 23

It is worthy of note that the presence of band (2) and the parameters

adopted for it influence the par4meters of band (3) to such an extent

that many investigators have considered only a single band of holes.

A band of low mobility carriers such as band (3) is needed to explain

the high density of states in bismuth as seen from specific heat data.

Nevertheless, as indicated in Table III, the contribution to the density

of states by this band (as determined by both Ettingshausen-Nernst and

thermoelectric data) is, although large, only about 1/2 the apparent

contribution of the light electrons. If this band is composed of a

single isotropic pocket as suggested by Lerner,23 one should set

I ___



41

S= b3 a c3 = 1. For n3 1.1 x 1017 and Z3ft7 x 103 1, the chemical8 3 33

potential is t3 = 0.235 x 10 _ 4 ergs (Fermi temperature of 130K) and the

effective mass is m- - 0.57 mon. The existence of more than one pocket
3

in the third band would force a larger value for m* and a smaller value
3

for the Fermi temperature T . An indication of the effective cyclotron
3'

mass for the carriers in this band is obtained if equal relaxation times

for all carriers are assumed. With HI, H2 , and H3 given by 32, 65, and

500 G, respectively, and n• and mn given by 0.055 m0 and 0.065 m
1 0 0

respectively, the effective cyclotron mass values of m*H /Hl- = 0.8 m1 3 1 0

and m*H/HA = 0.5 m fall quite close to the above value for the isotropic
2 3 2 0

effective mass m*.
3

(4) Band (4) does not have the same significance as the other three:

The maximum contribution of this band to the transport processes appears

at high field (H4 - 13 kG) in the range where the oscillations are

important. In this magnetic field range, the semiclassical theory is

no longer applicable, except for the asymptotic behavior of a l2* Indeed,

very little evidence for this band can be shown from a12' the only clue

being the existence of an extremely small concentration of holes

(n 4 - 0.015 x l101 cm- 3 ). In fact, more recent data on a 12 48 gives a

value for n4 even smaller with limits of precision which make it im-

possible to distinguish between a hole or electron character for this

carrier. Nevertheless, band (4) is analysed in the usual manner, since

considerations of a1,, l'I,, and E12 indicate the existence of a band of

the standard form. The low apparent number of carriers a 4 n4 - 0.25 x

1017/cm3 in all, with practically no contribution in a12' along with

the extremely large apparent density of states seems to indicate the

band may be due to Impurities or to a departure from the simple theory

used here. The hole character is mainly indicated by the sign of the

,.
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e thermoelectric data.

In summary, the band structure of bismuth can be explained by

four distinct bands, three of them with the usual character due to groups

of carriers. An illustration of the contributions of the various bands

to the observed effects can be seen in Figs. 11-13. In Fig. 12 the

quantity He'11 is plotted as a function of a = log H. The contribution

of each band is a uniform curve of the form Ai sech(a - a where A =

(a 2 k2 cT/6)(c Z ). The sum of the four curves coincides very nearly

with the experimentally observed values as shown in Fig. 12. Similarly,

the quantity Ha11 is displayed in Fig. 11 as the sum of the contributions

from each of the four bands. It should be noted that in similar plots

of the transverse effects a12 and elI 2' more importance is attached to the

higher mobility bands. This is the case since a12 and e'.1'2 directly

exhibit the quantities n./H. and b Z /H] respectively as seen in Fig. 13.

E. Density of States and Specific Heat

The electron specific heat is known to be a direct measure of the

total density of states, C = 1/3n 2 k2 TZ. In the case of bismuth, a strangely

large value of the specific heat (Z = 50 x 1031 erg- 1 cm" 3 ) has been found

by Kalinkina and Strekov.24 More recent measurements by Phillips25

indicate a smaller value, with Z = 15.5 x 1031. The apparent density of

states as determined from Table III is (in units of cm' 3 erg"I) ETbi JZjf

64 x lo 31 , EcjZj f 38 x 1031, in reasonably good agreement with Kalinkina

and Strekov. However, assuming the possibility of the fourth band being

due to Impurities, one would obtain libiZ R 43 x 11 Z f 27 x 1031

for very pure bismuth. Furthermore, if the abnormally large value of

b I z 30 x 1031 is rejected and the expected value of Z= 2.4 x 1031

substituted, a result Z = Z + Z2 + b Z3 = 3 1.l x 1031
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is obtained as a reasonable value for very pure bismuth; in excellent

agreement with the results of Phillips.E' No attempt is made here to

take account of the nuclear quadrupole contribution to the specific

heat.
2 3 -25

F. Two-Band Model

A relatively good fit of the experimental data is attained with

only a two-carrier model. Evidently, the pseudo band which appeared

in the preceeding analysis as band (4) will appear here too; but as

alceady pointed out, no carriers seem to correspond to it. Thus

attention is given only to the contributions of the other bands. The

fact that bands (1) and (2) of the preceeding analysis are so close

together make possible the consideration of the two as a single one in

first approximation. The hole band (3) of the former analysis is

slightly more populated and slightly more mobile. The results of the

two-band model analysis are shown in the Table III. The number of

electrons is close to the value found from low field galvanomagnetic

effects.' 0 ' 7 The excess of holes over the electrons is most probably due

to some acceptor impurities. The weighing factor a 37 for electron ise

in better agreement with the expected value5 2 than in the former case

of the multiband model; but the ratio between the hole and electron mobility

Ha/H - 0.1 is much too small compared to the expected value54 of 0.85.oh
The holes play a role more in agreement with the heavy holes suggested

from different studies2,23'42o'2 and are by comparison to the electrons,

much too heavy to be identified with the light hole ellipsoid (Section V A).

The identification of the light hole ellipsoid (with its chemical

potential of 1.9 x 10"14 ergs) leads to a density of state 3.4 to 5.4

times smaller than the apparent values obtained from the Nernst-

______________
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Ettinghausen thermoelectric effects. As in the multiband case, an

extremely large apparent density of state also appears in the Nernst-

Ettinghausen effect for the electrons (b f 20).

There is no doubt that the analysis of the thermoelectric effects

by terms of the type of Eq. (6) should give only a rough determination

of the density of state. Any dependence of the relaxation time on field,

energy and momentum will Influence these effects ever more than in the

case of the galvanomagnetic effects. A more comprehensive analysis of
48

these effects is now underway.

G. Oscillations in the Galvanomagnetic Effects

Examination of the Lifshitz-Kosevich Theory, Eqs. (7), (8), and (11),

for s12 shows that no osci llations should appear at high magnetic field

values where all bands are asymptotic. This is evident since the classical

mobility (*)ecH(H 2 + H reduces to qmj = (*) ec/H for H >> H

Experimentally, the oscillations are quite pronounced in the high field

range, as shown in Figs. 9 and 14. The implication is that some band

(or bands) in bismuth has not reached its asymptotic value in the range

of fields used in the experiments. Suppose there is one low mobility

band (j = u) which enhances these high field oscillations. If the re-

laxation time is assumed independent of the energy, Eq. (7) can be written

from Eqs. (8k, (11) and (5) as

-ec 1:{ E H LI Wz,(0
ec' M {H + H2  H2 + H2 - (*)j • (20)

jL
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FIGURE 14: The oscillatory components of the and a,,, at high fields

at 2.1 and 4.2 0 K.
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where Z u E Zi. In the trigonal direction only oscillations due to the

light holes (j - 2) are observed. Since for high fields, HN of the light

holes and electrons can be neglected so

H2

S ec n u (21a)
12L-K = 2 H2 + H 2

U

where Z /Z is taken as unity. With ý2 taken from Eq. (9) and the
u 2

experimentally determined values of - and R, Eq. (21a) is solved for H
U

In taking only the first term in the summation of Eq. (9), one obtains

H2
1/2 Hu

a12 = (0.110 H 1 2 7(sinh N) -2 in mho/cm. (22)
1-K H + Hu

The values of H obtained when this term is Identified with the experimental
U

amplitude, for various values of H, are given in Table IV.

Table IV

Comparison of the amplituoe of the oscillation in the conductivity
coefficients elI Io121exp with the Lifshitz and Kosevitch theory.
Equations (22),(4), (1lb), (25) are used to determine some of the
characteristic parameters of the unasymptotic band, for different values
of the magnetic field.

H lljexp 1712 1 e* Hu/au auHu Hu au Z4/Z a4
kG mho cm1" mho cm kG kG kG (H4 ,l3kG)

10 2.17 0.79 3.63 4.1I, 3.88 1.07 .205 3.58

12 2.25 0.82 3.67 4.60 4.11 1.12 .195 3.54

14 2.6 0.9 3.46 5.95 4.54 1.31 .205 3.76



The coefficient a can be examined in a similar manner. With all

bands except one asymptotic we obtain

n -
!- ' H 2, 2 (23)

11 L-K +H2
u

(-) if the unasymptotic band is holes, (+) if electrons. In this

approximation, the ratio of oscillation amplitudes is

IllIL-K H

I 2 LK 
(24)

However, as seen in Fig. 14, there is an apparent difference in phase

between the oscillation in a12 and all; at high field, the phase difference

approaches A/2, where a relative phase of v would be expected if the

unasymptotic band were a hole band. Values for Huau, a u Hu, au are

summarized in Table IV as determined, respectively, from Eqs. (22),

(23), (24) for data taken at 2.1 0 K. Note from the table that the ex-

perimental value of Hu increases with H. This is expected from this

analysis if there are actually two bands (H3 and H4) which are not asymp-

totic. The lower saturation field H 3- 500 G is indicated in the curve-

fitting techniques and is substantiated in the next section by a

comparison of the oscillation amplitudes in a12 and 1'

If, in the high field range lOkG < H < 14 kG, the effects of the

first three bands are neglected, Eq. (20) becomes
2

ecn 2  H2 +1 Z4°12 LK-H H2 Z (21b)

T4

Table IV gives the values of Z4/Z calculated for 144 a13 kG as obtained
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For the high field oscillations in ell2 Eq. (6) Is used in the

asymptotic form

el 1 (27)

S12 3H

If Eq. (27) is valid in the quantum case, oscillations arise from the

variation of the carrier's density of states. The oscillatory part of

El 2 for band j = 2 only is obtained by inserting Eq. (12) Into Eq. (27) as

n2k2cT2 2(26
C12 3H 2(8

where Z _= (6 n ).Mt The most important term in Eq. (28) comes from

the differentiation of the phase in n2, see Eq. (9).

If only the it = I term in Eq. (9) is retained, the oscillation

amplitude is

9121= O'095TH- 1 /2/sinh N In A/deg-cm. (29)
d.s.

The data of Table V show that at 2.10K the expected magnetic field

dependence is followed quite well by the experimental data. However,

the experimental values differ by a factor of 5 from those expected from

this simplified theory. At 4.30 K, the values of e1 2 predicted by the

theory differ from experimental values by a lesser margin; however, the

agreement in the field dependence Is not as good as that at 2.1 0 K. The

predicted temperature variation is not observed.

The oscillations in el'2 are related to those In a12 by Eqs. (9),

(21a) and (28) as

Il
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14n k2cm* T H2)..

* ell -~(Il+- ai=i~--~H (30)
d.s. 3e 2 h H H 12 L-K

where i > I terms of Eq. (9) have been neglected and all bands are assumed

asymptotic except one characterized with H and Z = Z.

TABLE V

Comparison between the amplitude of the oscillation in the experimental
Nernst-Ettinghausen kinetic coefficient!'gY2 Iexp and the amplitude of the
oscillation 1eY2 Id.s. due to the incidence in Eq. (28) of oscillation in the
density of states, at different temperatures and for different magnetic
field values.

T =2.10 K T =4.20 K

In HkG I121d.s"112 d.s. 12 X

x 106 A (OK.cm)'

6 6oo 3500 90

8 900 5000 300 1650

10 1100 5250 600 1750

12 1180 5250 880 1750

14 1200 6000 1120 2500

16 1220 6750 1320

As shown in Fig. 14, the oscillation of e'2 are shifted in phase

by n/2 relative to those of o12' in excellent agreement with Eq. (30).

The experimental values for and substituted into

* Eq. (30) yield values for the low mobility saturation field H - 1.6 kG
u

at H - 10 kG and H = 2 kG at H = 14 kG, both at 2.1 0 K. These values
u

seem to Indicate that the unsaturated third band plays a larger role than

shown in Table IV.

I..



Equation (12) Is used to determine the effect of oscillations in

the density of states on the thermoelectric coefficient for band j -

2 only

el, d.s. = 2 2 (31)

This expression does not yield an amplitude as large as that expected

from the contribution of scattering in the Zil'berman theory, see Eq. (11).

I. Oscillations in a 11 and e'1'1 and the Zil'berman Theory

In the Zil'berman theory, the oscillations due to a particular carrier

depend on the characteristic parameters of that carrier alone; here, the

light holes band (j = 2) parameters. Oscillation amplitudes for zi a

and[el 1 Zil shown in Table Vi are computed from Eqs. (13) and (14) at

T = 2.1 0K for the following cases:

Case (a) - The multiband model with the light hole band as mapped in

Section V A (a2 = c 2 n 1, n2 = 3.4 lo~l~cm3 , Z2 = 2.7 103 1cm' 3erg"1,

"H2 = 60 G);

Case (b) - The two-band model with the experimental parameters found

in Section V F (a 2 n2 = 3 x 101 7cm", c J 2 = 7.5 x 103 1cm 3ergl, H2 = W00 G);

Case (c) - The two-band model with isotropy imposed on band j = 2

(a2 = c2 = 1, n2 = 2.8 1017cm"3, Z2 = 2.2 103 1cmlerg-I, H2 = 400 G).

in every case, N is computed with m* = .065 m
2 2 0

In Table VI, as shown for cases (a) and (b), the Zil'berman theory

predicts the right order of magnitude for the a11 amplitude; the experimental

values lie between those of case (b) and those of case (a). The

experimental and predicted field dependences differ appreciably. It should

.t
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TABLE VI

Comparison of the amplitude of the oscillation in the experimental

magnetoconductivity a 1 lexp and kinetic thermoelectric coefficient

1" ý I with the oscillation expected from Zil'berman's theory

all lz1 1' 1"1, IZl1' for the different cases. (a) 2 = c 2 -ln 2 =

3.4 107cm"3, Z2 = 2.7 1031cm 3erg"I, H2 = 60 G; (b) a2 n 2 = 3 x 10lcm"3

c2Z2 = 7.-5 103 1 cm 3 erg" 1, H2 = 400 G; (c) a2 = c2 = 1, n2 =2.8

1017 cm" 3 , z2 = 2.2 103 1 cm"3 erg" 1 , H2 = 400 G. The o are given In mho cm 1 ,

the E" in .lA(OKcm)"l. Also given, the 161 11 d.s. shows the incidence In

Eq. (31) of theý oscillation in the density of state.

r p Ia11 I~l 6 elp ellI
H ixp e•1 x 1 AZil jd.s.H x 106A

in kG mho.cm"1 (a) (b) x (OKcm)" 1  (a) (b) (c) (b)

6 1.7 .55 3.7 4320 216 4000 1180 55

8 2. .62 4.2 7300 214 4000 1170 62

10 2.18 .61 4.1 8370 180 3300 1000 60

12 2.25 .56 3.7 7830 144 2450 720 53

14 2.6 .5 3.2 8100 111 2030 600 48

be remembered that in the Lifshitz-Kosevitch expression allI matching
I IL-K

can be obtained by adapting the parameter a or a4 to the quite reasonableu

value 1.2 or 3.5 respectively. Probably both terms a1 L-K and 1lZil

contribute to the experimental oscillation.

Table VI also shows the expected values of 71 from the Zil'berman

theory in the three cases. Agreement in the order of magnitude is achieved
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mostly in case (b) where the large apparent density of states for the

holes is used; and thus favors the Idea outlined in Section V F. In

Table VI are also shown for comparison the amplitude of oscillations

expected in el£11 due to oscillations In the density of states. The

amplitudes for the optimum case (b) are shown to be negligible

compared either to the experimental values or to the values calculated

from the Zil'berman theory.

With the different oscillatory effects written in the form

A cos A + ýo)

with A a positive amplitude, some relations can be obtained between the

relative phase between the different effects and their theoretical

expressions. The value of 0 determined from experiment and theory areo

displayed in Table VII. The value of the period P used for the experimental

TABLE VII

Comparison between the phase of the oscillation in the experimental kinetic

coefficient a12 1 exp ll ex p  6'21exp oll 1 Iexp and the phase expected

from the different theories (with the y = 1/2 free electron assumption).

a121L-K a1 IL-K all z • l' ld.s. ell _d.s e _ _II_

Theoretical -1.751( -1.7571 -l. 2r -. 25A -0.25n -•-.75r

or or

-2.25 -2. 25ir

Experimental -1.37,r -. 82n

Average to - 1, to -1.60

-1. 67,t- 2. Oi
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determination of $o was taken as 15.1 106 G. There is some uncertainty

in the phase determinations for 12 and •1 because these effects show

some deformation in the high field region. Thus for a]2' two values of

a are given, one for low and one for high field, -1.373 and -1.67i,
0

respectively, with a somewhat good high field fit of the value -1.75i

expected from a12 - The phase for a L Is for the case of an
LKI L-K

unsaturated hole band. The experimental 71Il matches well the

Zil'berman value but some contribution of Is still possible.

For 9"2  , two values of 00 are given,for low and high field:

-1.827 and -2.0,r, respectively, which are in fair agreement with the

expected value -2.25v for el1.2 • A good agreement for the phase existsSd.s.
between I exp and -e ; it was expected from Table VI that I1

11 ex 11 Ii 1 d.s.
would not be influential.

In the above computations of the phase from theoretical expressions,

the value of y in Eq. (9) was taken equal to its free electron value of

1/2. An almost perfect fit would be obtained between theoretical and

experimental effect with 7 = 0.42.

CONCLUS I ON

The properties of the crystal of bismuth used in this work, because

of the relatively poor resistance ratio R3 OOOK/R4.2K = 40, has the

following simple features: Its thermal conductivity is practically all

lattice conductivity; no size effect correction has to be made for the

galvanomagnetic effects; the residual resistance is attained at liquid

helium temperatures so that lattice defect scattering can be assumed;

the saturation fields of the different bands are in the magnetic field

range most favorable for observation. However, the impurities in the



crystal may be responsible for the appearance of a pseudo band, band (4),

and the slight excess of holes over electrons.

The mapping of the light hole Fermi surface agrees with that of

Brandt and his co-workers as modified by the results of Galt, et al.

and those of Smith.

The band analysis of the different transport effects using a Lorentz

term for each band can be made in either the case of two or three bands,

plus the addition of a "pseudo band" in each case, to account for the

high field behavior. in both cases, a somewhat unusually high value of

the apparent density of states is obtained for the light electrons. In

the three band model--one light electron band (1), one light hole band (2)

and one heavy hole band (3)--general agreement is obtained with the various

data existent on bismuth, except for a very large uncertainty in the

parameter of band (3) and the strange tendency for the light electrons to

show an isotropic behavior. In the two-band model, difficulty exists

for the identification of the hole band with the holes of the mapped

ellipsoid. An unusual temperature dependence of the thermoelectric

effects is found but not explained.

The oscillations in the different effects can be made to match or,

at least, be of the order of magnitude of those expected from different

theories. Thus the result of the Lifshitz-Kosevitch theory for the

oscillations in the Hall conductivity matches the experimental values when

the empirically determined characteristics of band (4) are used. The

Zil'berman result for oscillation in the conductivity 11 matches the

experimental values for conditions somewhat intermediate between the

two and three band models, but the Zil'berman result for oscillation in

the thermoelectric coefficient el favors.the two band model. The right

11)
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order of magnitude for oscillation in the Nernst-Ettinghausen effect el2

Is obtained from the oscillations in the density of states.
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